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Do the Fama–French Factors Proxy
for Innovations in Predictive Variables?

RALITSA PETKOVA∗

ABSTRACT

The Fama–French factors HML and SMB are correlated with innovations in variables
that describe investment opportunities. A model that includes shocks to the aggregate
dividend yield and term spread, default spread, and one-month Treasury-bill yield
explains the cross section of average returns better than the Fama–French model.
When loadings on the innovations in the predictive variables are present in the model,
loadings on HML and SMB lose their explanatory power for the cross section of
returns. The results are consistent with an ICAPM explanation for the empirical
success of the Fama–French portfolios.

IN A SERIES OF PAPERS, Fama and French (1993, 1995, 1996) (FF hereafter) show
that a three-factor model explains most of the cross-sectional variation in
average returns of portfolios sorted by size and book-to-market. The three
factors are the excess return of the market portfolio (RM), the return of a
portfolio long in high book-to-market stocks and short in low book-to-market
stocks (RHML), and the return of a portfolio long in small stocks and short in
big stocks (RSMB).

The impressive performance of the FF three-factor model has spurred an
enthusiastic debate in the finance literature over the economic interpretation
of the HML and SMB factors. Among the many competing explanations behind
the success of the FF model is the one based on time-varying investment oppor-
tunities. Specifically, FF (1993) suggest that HML and SMB might proxy for
state variables that describe time variation in the investment opportunity set.
This risk-based explanation is in the context of Merton’s (1973) Intertemporal
Capital Asset Pricing Model (ICAPM).1

∗Ralitsa Petkova is from the Weatherhead School of Management at Case Western Reserve
University. I would like to thank Gregory Bauer, Christopher Jones, John Long, and Lu Zhang for
helpful discussions and comments. The comments and suggestions of Rui Albuquerque, Michael
Barclay, Ludger Hentschel, William Schwert, Jay Shanken, Clara Vega, Jerry Warner, and other
seminar participants at the University of Rochester are also appreciated. I am grateful to Richard
Green (the editor) and an anonymous referee for many insightful comments that have greatly
improved the paper. All remaining errors are my own.

1 There exist other explanations for the success of the HML and SMB factors. Some of these
include data snooping and other biases in the data (Lo and MacKinlay (1990) and Kothari, Shanken,
and Sloan (1995)). Berk, Green, and Naik (1999) and Gomes, Kogan, and Zhang (2003) suggest
that problems in the measurement of beta may explain the FF results. Ferson, Sarkissian, and
Simin (1999) state that attribute-sorted portfolios may appear to be risk factors even when the
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Is the FF model a good candidate for an intertemporal asset pricing model?
Recent empirical research provides support for the risk-based explanation be-
hind the HML and SMB factors. For the most part, this is done by relating
the FF factors to macroeconomic variables and business cycle fluctuations.
Liew and Vassalou (2000), for instance, show that HML and SMB help fore-
cast future rates of economic growth, and both Lettau and Ludvigson (2001)
and Vassalou (2003) show that accounting for macroeconomic risk reduces the
information content of HML and SMB. The relation between the FF factors and
GDP growth is consistent with an ICAPM explanation behind the three-factor
model. According to this explanation, changes in the investment opportunity
set are summarized by changes in future GDP growth.

However, changes in financial investment opportunities are not necessarily
exclusively related to news about future GDP growth. Furthermore, Campbell
(1996) points out that empirical implementations of the ICAPM model should
not rely on choosing important macroeconomic variables. Instead, the factors
in the model should be related to innovations in state variables that forecast
future investment opportunities.

The goal of this paper is twofold. First, I examine an empirical implementa-
tion of the ICAPM in which the factors are innovations in state variables that
forecast future investment opportunities. Second, I relate the FF factors to
innovations in state variables to show that the FF model is consistent with
an ICAPM explanation behind the size and book-to-market effects. This paper
differs from the studies mentioned above since it does not rely on important
macroeconomic variables such as GDP or consumption growth. In particular,
I choose a set of relevant state variables including the short-term T-bill, term
spread, aggregate dividend yield, and default spread. These state variables are
chosen to model two aspects of the investment opportunity set, namely, the
yield curve and the conditional distribution of asset returns.

By choosing variables that have forecasting power for future investment op-
portunities, this paper responds to Fama’s (1991) and Cochrane’s (2001) crit-
icism that the ICAPM should not be used as a “fishing license” for choosing
multiple factors. Only factors that forecast future investment opportunities
should be admitted in the model. Furthermore, Cochrane (2001, p. 444) points
out that “. . . though Merton’s . . . theory says that variables which predict mar-
ket returns should show up as factors which explain cross-sectional variation
in average returns, surprisingly few papers have actually tried to see whether
this is true . . . .” More recently, Brennan, Wang, and Xia (2004) use an ICAPM
model in which the relevant state variables are the real interest rate and the
Sharpe ratio. They test the pricing abilities of their model and have some suc-
cess at explaining the book-to-market and size effects. In this paper, I consider
a larger set of state variables, and in particular, I show that both the level and

attributes are unrelated to risk. Lakonishok, Shleifer, and Vishny (1994) argue that the book-to-
market effect arises since investors overvalue companies that have performed well in the past.
Daniel and Titman (1997) suggest that stocks’ characteristics, rather than risks, are priced in the
cross section of average returns.
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the slope of the yield curve have important pricing implications. Chen (2003)
models not only changes in future market returns, but also changes in future
market volatility. He argues that if HML and SMB are to be explained in the
context of his model, then they should forecast the market return and its volatil-
ity. He finds no empirical support for such forecasting ability of the FF factors.
In this paper, I do not assume that HML and SMB have predictive abilities for
the excess market return. Rather, I argue that they proxy for innovations in
variables that possess such ability.

There are three main contributions in this study. First, I show that HML and
SMB proxy for innovations in state variables that predict the excess market
return and the yield curve. Second, I show that a model in which the factors
are both the excess market return and innovations in the aggregate dividend
yield, term spread, default spread, and one-month T-bill yield has a higher
explanatory power than the FF three-factor model. In addition, the FF factors
are not significant explanatory variables for the cross section of average returns
in the presence of these innovations factors.

Third, I show that the model based on innovations in the dividend yield, term
spread, default spread, and short-term T-bill is able to account for common time-
varying patterns in returns. Namely, the model captures cross-sectional differ-
ences in sensitivities with respect to conditioning information. The FF model,
however, is not successful at capturing the effect of conditioning information, as
shown in Ferson and Harvey (1999). Therefore, the ICAPM specification that I
consider is a good candidate for a conditional asset pricing model.

The rest of the paper is organized as follows. Section I presents the ICAPM
framework of this study and the methods used to construct shocks in state
variables. Section II presents the data and examines the relation between the
FF factors and the innovations in the state variables. Section III runs different
sets of cross-sectional regressions for 25 portfolios sorted by size and book-to-
market, and also contains several robustness tests. Section IV summarizes and
concludes.

I. The Determinants of Average Returns

A. The ICAPM Framework

The analysis in this paper assumes that asset returns are governed by the
discrete-time version of the ICAPM of Merton (1973). According to the ICAPM,
if investment opportunities change over time, then assets’ exposures to these
changes are important determinants of average returns in addition to the mar-
ket beta. I follow the framework adopted by Campbell (1996) to model changes
in the investment opportunity set. More precisely, I look at the innovations in
state variables that capture uncertainty about investment opportunities in the
future.

I assume the following general model for the unconditional expected excess
returns on assets:

E(Ri) = γM βi,M +
∑

(γuK )βi,uK , ∀i, (1)
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where E(Ri) is the excess return of asset i, γ M is the market risk premium, and
γuK is the price of risk for innovations in state variable K. The betas are the
slope coefficients from the return-generating process

Ri,t = αi + βi,M RM ,t +
∑

(βi,uK )uK
t + εi,t , ∀i, (2)

where Ri,t is the return on asset i in excess of the risk-free rate at the end
of period t, RM,t is the excess return on the market portfolio at the end of
period t, and uK

t is the innovation to state variable K at the end of period t.
The innovation is the unexpected component of the variable. According to the
asset pricing model, only the unexpected component of the state variable should
command a risk premium. Note that the innovations to the state variables
are contemporaneous to the excess market returns. This equation captures the
idea that the market portfolio and the innovations to the state variables are
the relevant risk factors.

Finally, it is important to specify a process for the time-series dynamics of the
state variables in the model. I adopt the vector autoregressive (VAR) approach of
Campbell (1996). I write the excess market return as the first element of a state
vector zt. The other elements of zt are state variables that proxy for changes in
the investment opportunity set. The assumption is that the demeaned vector
zt follows a first-order VAR, as given by

zt = Azt−1 + ut . (3)

The residuals in the vector ut are the innovation terms that are the risk
factors in equation (2); therefore, uK

t ∈ ut for all state variables K. These in-
novations are risk factors since they represent the surprise components of
the state variables that proxy for changes in the investment opportunity
set.

The model described by equations (1)–(3) links the time-series literature on
asset returns to the cross-sectional literature. Campbell argues that this is a
desirable feature of this model since researchers are less likely to detect spu-
rious patterns when they must link time-series and cross-sectional findings.
The model implies that priced factors should not be determined by running a
factor analysis on the covariance matrix of returns or by selecting important
macroeconomic variables. Rather, researchers should use innovations in vari-
ables that proxy for changes in the investment opportunity set in cross-sectional
asset pricing studies.

My paper is different from Campbell’s since I focus on relating the empir-
ical success of the FF factors to innovations in state variables. In addition, I
use portfolios sorted by size and book-to-market since these have proven to be
among the most challenging sets of assets for existing asset pricing models.
Unlike Campbell, I do not impose intertemporal restrictions on the risk prices
in the model and I do not use labor income growth as a risk factor.
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B. The State Variables of Interest

For the empirical implementation of the model described in the previous
section, it is necessary to specify the identity of the state variables. In this
paper I choose a set of state variables to model two aspects of the investment
opportunity set, the yield curve and the conditional distribution of asset returns.
In particular, I choose the short-term T-bill, term spread, aggregate dividend
yield, and default spread.

The ICAPM dictates that the yield curve is an important part of the invest-
ment opportunity set. Furthermore, Long (1974) points out that the yield curve
is important in an economy with a bond market. Therefore, I use the short-term
T-bill yield (RF) and the term spread (TERM) to capture variations in the level
and slope of the yield curve.2

In addition to the yield curve, the conditional distribution of asset returns
is a relevant part of the investment opportunity set facing investors in the
ICAPM world. There is growing evidence that the conditional distribution of
asset returns, as characterized by its mean and variance, changes over time.
The time-series literature has identified variables that proxy for variation in
the mean and variance of returns. The aggregate dividend yield (DIV), the
default spread (DEF), and interest rates are among the most common, which
motivates their use in this paper.3

The variables described above are good candidates for state variables within
the ICAPM. Merton (1973) states that stochastic interest rates are important
for changing investment opportunities. In addition, the default spread, dividend
yield, and interest rate variables have been used as proxies for time-varying risk
premia under changing investment opportunities. Therefore, all these variables
are likely to capture the hedging concerns of investors related to the changes
in interest rates and to variations in risk premia.

Two other variables proposed as candidates for state variables within the
ICAPM are the returns on the HML and SMB portfolios. FF (1993) show that
these factors capture common variation in portfolio returns that is independent
of the market and that carries a different risk premium. The goal of this paper
is to examine whether the FF factors proxy for the state variables described
before that have been shown to track time variation in the market risk pre-
mium and the yield curve. The analysis in this paper shows that the first set of
state variables performs better in asset pricing tests than the FF three-factor
model. In addition, the FF factors are no longer significant in the presence of
innovations in the dividend yield, term spread, default spread, and short-term
T-bill.

2 Litterman and Scheinkman (1991) show that the two most important factors driving the term
structure of interest rates are its level and its slope.

3 The following is only a partial list of papers that document time variation in the excess market
return and the variables they use: Campbell (1987), term spread; Campbell and Shiller (1988),
dividend yield; Fama and Schwert (1977), T-bill rate; FF (1989), default spread. In this paper I
model only time variation in the first moment of asset returns. Modeling the conditional second
moment of the return distribution is beyond the scope of this paper.
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C. Econometric Approach

The complete set of candidate state variables within the ICAPM framework
examined in this paper includes the dividend yield, term spread, default spread,
short-term T-bill, and the FF portfolios. I specify a vector autoregressive (VAR)
process for this vector of state variables. The first element of the vector is the
excess return on the market, RM, while the other elements are DIV, TERM,
DEF, RF, RHML, and RSMB, respectively.4 For convenience, all variables in the
state vector have been demeaned. The first-order VAR is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RM ,t

DIVt

TERMt

DEFt

RFt

RHML,t

RSMB,t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RM ,t−1

DIVt−1

TERMt−1

DEFt−1

RFt−1

RHML,t−1

RSMB,t−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ ut , (4)

where ut represents a vector of innovations for each element in the state vector.
From ut I extract six surprise series, which correspond to the dividend yield,
term spread, default spread, one-month T-bill yield, and the FF factors. They
are denoted uDIV , uTERM, uDEF, uRF, uHML, and uSMB, respectively.5 This VAR
represents a joint specification of the dynamics of all candidate state variables
within the ICAPM. This specification treats the FF factors as potential can-
didates for state variables that command separate risk premia from the other
variables. In the following sections of the paper I show that the subset of vari-
ables that proxy for time-varying risk premia and interest rates performs better
than the subset that includes only the FF factors. In addition, the FF factors
do not command significant risk premia in the cross section in the presence of
innovations to the other state variables.

The specification of the VAR system above does not account for the possi-
bility that the full information set used by investors is not observed by the
econometrician. It is possible that investors use other information to predict
movements in the yield curve and the conditional distribution of asset returns.
However, the evidence that follows shows that there is a significant relation
among the set of variables that proxy for time-series predictability, DIV, TERM,
DEF, RF, and the set of variables that are associated with cross-sectional pre-
dictability, RHML, RSMB. Therefore, the state variables chosen by following the
intuition of the ICAPM are likely to be relevant variables in the information
set used by investors as well. Section II provides more details on the estimation
of the VAR system.

4 I thank an anonymous referee for suggesting this augmented VAR system.
5 I also compute innovations by specifying an AR (1) process for each state variable (e.g., TERMt =

c0 + c1TERMt−1 + uTERM
t ). The results are qualitatively similar to the ones presented for the VAR

case.
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The innovations derived from the VAR model are risk factors in addition to the
excess return of the market portfolio. An asset’s exposures to these risk factors
are important determinants of its average return according to the ICAPM. To
test the ICAPM specification, I use the Fama–MacBeth (1973) cross-sectional
method, which is appropriate in this case since not all factors represent portfolio
returns. In the first pass of this method, I specify a multiple time-series regres-
sion that provides estimates of the assets’ loadings with respect to the market
return and the innovations in the state variables. More precisely, I examine the
following time-series regression for each asset:

Ri,t = αi + βi,M RM ,t + (βi,ûDIV )ûDIV
t + (βi,ûTERM )ûTERM

t + (βi,ûDEF )ûDEF
t

+ (βi,ûRF )ûRF
t + (βi,ûHML )ûHML

t + (βi,ûSMB )ûSMB
t + εi,t , ∀i. (5)

The û terms represent the estimated surprises in the state variables. Note
that the innovations terms are generated regressors and they appear on the
right-hand side of the equation. However, as pointed out by Pagan (1984),
the ordinary least squares (OLS) estimates of the parameters’ standard er-
rors will still be correct if the generated regressor represents the unanticipated
part of a certain variable. On the other hand, if the û terms are only noisy
proxies for the true surprises in the state variables, then the estimates of the
factor loadings in the above regression will be biased downward, which in turn
would bias the results against finding a relation between the innovations and
asset returns. In Section III, I describe a Monte Carlo exercise that provides
the small-sample distribution of the risk loadings.

The second step of the Fama–MacBeth procedure involves relating the av-
erage excess returns of all assets to their exposures to the risk factors in the
model. I specify the cross-sectional relation

Ri,t = γ0 + γM β̂i,M + (γûDIV )β̂i,ûDIV + (γûTERM )β̂i,ûTERM + (γûDEF )β̂i,ûDEF

+ (γûRF )β̂i,ûRF + (γûHML )β̂i,ûHML + (γûSMB )β̂i,ûSMB + ei,t , ∀t. (6)

If assets’ loadings with respect to the risk factors are important determinants
of average returns, then the γ terms from the above regression should be
significant—the γ terms represent the prices of risk for innovations in each
state variable.

In general, I use two methods to compute the first-pass beta estimates used in
the cross-sectional regression. First, I compute the full-sample betas in multiple
regressions, as in Lettau and Ludvigson (2001). Second, I compute the betas
with five-year rolling multiple regressions, as in Fama and MacBeth (1973).
Both methods produce similar results. Therefore, I report estimates for the
first method only.

Since the betas are estimated from the time-series regression in (5), they
represent generated regressors in (6). This is the classical errors-in-variables
problem, arising from the two-pass nature of this approach. Following Shanken
(1992), I use a correction procedure that accounts for the errors-in-variables
problem. Shanken’s correction is designed to adjust for the overstated precision
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of the Fama–MacBeth standard errors. It assumes that the error terms from
the time-series regression are independently and identically distributed over
time, conditional on the time series of observations for the risk factors. The
adjustment also assumes that the risk factors are generated by a stationary
process. Jagannathan and Wang (1998) argue that if the error terms are het-
eroskedastic, then the Fama–MacBeth procedure does not necessarily result in
smaller standard errors of the cross-sectional coefficients. In light of these two
issues, I report both unadjusted and adjusted cross-sectional statistics.6

I also examine specifications of the system defined by equations (5) and (6)
that contain only the market return and the FF factors, and only the market
return and innovations to DIV, TERM, DEF, and RF. These specifications are
discussed in detail in Section III.

II. Data and Time-Series Analysis

A. Data

In this study, I use monthly data for the period from July 1963 to December
2001.7 The beginning of the period is set to July 1963 to coincide with the be-
ginning of the period examined by FF (1992, 1993). The returns on the market
portfolio, HML, and SMB are from Professor Ken French’s website, as well as
the returns on 25 portfolios sorted by size and book-to-market. The 25 portfo-
lios are the test assets; they have become the benchmark in testing competing
asset pricing models. These assets represent one of the most challenging set of
portfolios in the asset pricing literature.

6 I also examine a different estimation approach of the asset pricing model, based on generalized
method of moments (GMM). GMM makes it possible to estimate the innovations terms in (4) and
the prices of risk in (6) simultaneously. The model takes the form

Et [Mt+1(1 + Ri,t+1)] = 1,

where Ri,t+1 is the return of portfolio i at time t + 1, Mt+1 = b0 + b′Ft+1, and Ft+1 = [RM, uDIV , uTERM,
uDEF, uRF, uHML, uSMB]. The risk factors in F that represent innovations to state variables are the
residuals in the vector u in the following first-order VAR:

zt+1 = Azt + ut+1.

The vector z consists of the demeaned values of the excess market return, the dividend yield, the
term spread, the default spread, the short-term T-bill, and the FF factors HML and SMB.

I estimate the innovations from the VAR system and the coefficients in the stochastic discount
factor in one step. To do so, I stack the moment conditions of the VAR on top of the moment
conditions of the asset pricing model,

g (A, b0, b) =
[

E[ut+1 ⊗ zt ]
E[Mt+1(1 + Rt+1) − 1]

]
=

[
0
0

]
.

The results based on the GMM estimation are very similar to those derived through the two-step
Fama–MacBeth procedure. Further details about the GMM estimation are available upon request.

7 I also perform the entire analysis for the sample period examined by FF (1992, 1993): July
1963 to December 1991. The results are very similar to those reported in the paper and are omitted
for the sake of brevity. However, they are readily available upon request.
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In addition to the FF factors, I use four other variables as state variables
in the context of the ICAPM. These are the dividend yield of the CRSP
value-weighted portfolio (computed as the sum of dividends over the last
12 months, divided by the level of the index), the difference between the yields
of a 10-year and a 1-year government bond (term spread), the difference be-
tween the yields of a long-term corporate Baa bond and a long-term gov-
ernment bond (default spread), and the 1-month T-bill yield. Data on bond
yields are from the FRED® database of the Federal Reserve Bank of St. Louis.
The T-bill yield and the term spread are used to measure the level and slope
of the yield curve, respectively. The new empirical evidence in this paper is that
the HML and SMB portfolios are significantly correlated with the unexpected
components of the variables that have been shown to describe time variation
in risk premia and interest rates. In addition, an asset pricing model in which
the factors are the market return and innovations to DIV, TERM, DEF, and RF
performs better than the FF model and captures common time-varying patterns
in returns.

B. VAR Estimation

The state variable candidates are the FF factors and the four predictive vari-
ables described above. All are included in a first-order VAR system. Campbell
(1996) emphasizes that it is hard to interpret estimation results for a VAR
factor model unless the factors are orthogonalized and scaled in some way.
In his paper the innovations to the state variables are orthogonal to both the
excess market return and labor income. Following Campbell, I triangularize
the VAR system in equation (4) in a similar way: The innovation in the ex-
cess market return is unaffected, the orthogonalized innovation in DIV is the
component of the original DIV innovation orthogonal to the excess market
return, and so on.8 The orthogonalized innovation to DIV is a change in the
dividend/price ratio with no change in the market return; therefore, it can be
interpreted as a shock to the dividend. Similarly, shocks to the term spread,
default spread, short-term rate, and the FF factors are orthogonal to the con-
temporaneous stock market return. As in Campbell (1996), I also scale all in-
novations to have the same variance as the innovation in the excess market
return.

Orthogonalizing the innovations to the state variables with respect to the
excess market return has an additional advantage. The coefficient in front of
the market factor in the multiple time-series regression will be equal to the
simple market beta computed in a univariate time-series regression. This is a
convenient way to assess whether the innovations to the state variables add
explanatory power to the simple CAPM model, that is, it is a way of testing
whether the ICAPM collapses to the simple CAPM.

8 The correlation between the excess market return and the innovation in DIV that is not orthog-
onalized is −0.89. Campbell (1996) reports a similar result and uses that as part of the motivation
behind forming innovations orthogonal to the excess market return.
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Table I
Time-Series Regressions Showing the Contemporaneous Relations

between Innovations in State Variables and the Fama–French Factors
This table presents time-series regressions of innovations in the dividend yield (ûDIV

t ), term spread
(ûTERM

t ), default spread (ûDEF
t ), and 1-month T-bill yield (ûRF

t ) on the excess market return, RM ,
and the Fama–French factors RHML and RSMB. The innovations to the state variables are computed
in a VAR system. The t-statistics are below the coefficients and are corrected for heteroskedasticity
and autocorrelation using the Newey–West estimator with five lags. The Adjusted R2 is reported
in percentage form. The sample period is from July 1963 to December 2001.

Regression: ût = c0 + c1 RM ,t + c2 RHML,t + c3 RSMB,t + εt

Dep. Variable c0 c1 c2 c3 Adj. R2

ûDIV
t 0.00 −0.08 −0.30 −0.01 3.00

0.85 −0.70 −2.43 −0.09
ûTERM

t −0.00 0.06 0.24 0.03 2.00
−0.56 0.75 2.30 0.59

ûDEF
t −0.00 0.07 0.17 −0.12 2.00

−0.38 1.11 2.10 −1.92
ûRF

t 0.00 −0.04 −0.13 0.01 0.00
0.36 −0.51 −1.36 0.14

It is interesting to note that the returns on the FF factors are very highly
correlated with their respective innovation series. For example, the correlation
between RHML,t and ûHML

t is 0.90, while the correlation between RSMB,t and ûSMB
t

is 0.92. Therefore, the returns on the HML and SMB portfolios are good proxies
for the innovations associated with these variables.

C. Relation between RHML and RSMB and the VAR Innovations

As a first step toward testing whether the FF factors proxy for innovations
in state variables that track investment opportunities, I examine the joint dis-
tribution of RHML and RSMB and innovations to DIV, TERM, DEF, and RF. I
run the time-series regression

ût = c0 + c1 RM ,t + c2 RHML,t + c3 RSMB,t + εt (7)

for each series of innovations in the state variables. The results for these re-
gressions are presented in Table I, with the corresponding t-statistics, below the
coefficients, corrected for heteroskedasticity and autocorrelation. Innovations
in the dividend yield, ûDIV

t , covary negatively and significantly with the return
on HML. In addition, ûTERM

t covaries positively and significantly with the HML
return. These results are robust to the presence of the market factor in the re-
gression. The return on the HML portfolio covaries positively and significantly
with ûDEF

t , while the return on the SMB factor covaries negatively with ûDEF
t

(the corresponding t-statistic is marginally significant). The last regression in
Table I indicates that the FF factors are not significant determinants of inno-
vations in the T-bill yield. The results in the table remain unchanged if the
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independent variables in the equation above are the innovations to RHML and
RSMB derived from the VAR system.9

A recent paper by Hahn and Lee (2003) also provides evidence that HML is
related to a TERM factor, while SMB is related to a DEF factor. The authors
use simple changes in the term spread and the default spread to measure their
TERM and DEF variables. There is a major difference between my paper and
Hahn and Lee (2003), however: They do not show whether the model they
propose is a good conditional model. Given the criticism of the FF model by
Ferson and Harvey (1999), it is important to verify the asset pricing abilities
of a model that is proposed as an alternative to the FF model. In addition, I
include the FF factors in the same VAR system as the other state variables.
This enables the joint specification of the time-series dynamics of all factors in
the model.

As pointed out by FF (1989), the values of the term spread signal that ex-
pected market returns are low during expansions and high during recessions.
In addition, FF document that the term spread very closely tracks the short-
term fluctuations in the business cycle. Therefore, positive shocks to the term
premium are associated with bad times in terms of business conditions, while
negative shocks are associated with good times. In light of the results doc-
umented by Petkova and Zhang (2004), value stocks are riskier than growth
stocks in bad times and less risky during good times, the relation between HML
and shocks to the term spread seems natural.

Another interpretation of the relation between shocks to the term spread
and the HML portfolio is in the context of cash flow maturities of assets. This
point is discussed by Cornell (1999) and Campbell and Vuolteenaho (2004). The
argument is that growth stocks are high-duration assets, which makes them
similar to long-term bonds and more sensitive to innovations in the long end
of the term structure. Similarly, value stocks have lower duration than growth
stocks, which makes them similar to short-term bonds and more sensitive to
shocks to the short end of the yield curve.

Chan and Chen (1991) have argued that small firms examined in the litera-
ture tend to be marginal firms, that is, they generally have lost market value
due to poor performance, they are likely to have high financial leverage and
cash flow problems, and they are less likely to survive poor economic condi-
tions. In light of this argument, it is reasonable to assume that small firms will
be more sensitive to news about the state of the business cycle. Therefore, it
is puzzling that I find no significant relation between SMB and surprises to
the term spread. Innovations in the term spread seem to be mostly related to
HML. This observation suggests that the HML portfolio might represent risk
related to cash flow maturity, captured by unexpected movements in the slope
of the term structure.

9 The R2s in the regressions reported in Table I are rather low. This does not imply, however,
that the innovations in the state variables cannot price assets as well as the FF factors. It could
be the case that only the information in the FF factors correlated with the state variables is relevant
for the pricing of risky assets. A similar point is made by Vassalou (2003).
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Innovations in default spread, uDEF
t , stand for changes in forecasts about

expected market returns and changes in forecasts about default spread. FF
(1989) show that the default premium tracks time variation in expected returns
that tends to persist beyond the short-term fluctuations in the business cycle. A
possible explanation for the negative relation between SMB and shocks to the
default spread could be that bigger stocks are able to track long-run trends in
the business cycle better than the smaller stocks. The result that HML is also
related to shocks in the default spread is consistent with the interpretation of
HML as a measure of distress risk. 10

In summary, the empirical literature documents that both value and small
stocks tend to be under distress, with high leverage and cash flow uncertainty.
The results in this study suggest that the book-to-market factor might be
related to asset duration risk, measured by the slope of the term structure,
while the size factor is most likely related to asset distress risk, measured by
the default premium.

It is reasonable to test whether the significant relation between the state
variables surprises and the FF factors gives rise to the significant explanatory
power of HML and SMB in the cross section of returns. In the next section,
I first examine whether HML and SMB remain significant risk factors in the
presence of innovations to the other state variables. The results from the cross
sectional regressions suggest that HML and SMB lose their explanatory power
for the cross section of returns once accounting for the other variables. This
supports an ICAPM explanation behind the empirical success of the FF three-
factor model.

III. Cross-Sectional Regressions

A. Incremental Explanatory Power of the Fama–French Factors

In this section, I examine the pricing performance of the full set of state
variables considered before over the period from July 1963 to December 2001.11

The full set of state variables consists of the dividend yield, term spread, default
spread, short-term T-bill yield, and the FF factors. The innovations to these
state variables derived from a VAR system are risk factors in the ICAPM model.
The objective is to test whether an asset’s loadings with respect to these risk
factors are important determinants of its average return.

The first specification that I examine is

Ri,t = γ0 + γMKTβ̂i,MKT + (γûDIV )β̂i,ûDIV + (γûTERM )β̂i,ûTERM + (γûDEF )β̂i,ûDEF

+ (γûRF )β̂i,ûRF + (γûHML )β̂i,ûHML + (γûSMB )β̂i,ûSMB + ei,t , (8)

10 The distress risk interpretation of the book-to-market effect is advocated by FF (1992, 1993,
1995, 1996) and Chen and Zhang (1998), among others.

11 I also perform tests over the period from 1953:05 to 2001:12. The results are qualitatively
similar to those for the sample period presented in the paper. The date 1953:05 indicates the
beginning of the period for which uTERM

t and uDEF
t data become available from FRED®.



Do the Fama–French Factors Proxy for Innovations? 593

Table II
Cross-Sectional Regressions Showing the Incremental Explanatory

Power of the Fama–French Factor Loadings
This table presents Fama–MacBeth cross-sectional regressions using the excess returns on 25 port-
folios sorted by book-to-market and size. The full-sample factor loadings, which are the independent
variables in the regressions, are computed in one multiple time-series regression. The coefficients
are expressed as percentage per month. The table presents results for the model including the excess
market return, RM , and innovations in the dividend yield, term spread, default spread, 1-month
T-bill yield, and the Fama–French factors HML and SMB. The Adjusted R2 follows Jagannathan
and Wang (1996) and is reported in percentage form. The first set of t-statistics, indicated by FM
t-stat, stands for the Fama–MacBeth estimate. The second set, indicated by SH t-stat, adjusts for
errors-in-variables and follows Shanken (1992). The table examines the sample period from July
1963 to December 2001.

The Model with Innovations in All State Variables

γ 0 γ M γûDIV γûTERM γûDEF γûRF γûHML γûSMB Adj. R2

Estimate 1.11 −0.57 −0.83 3.87 0.37 −2.90 0.42 0.41 77.26
FM t-stat 3.29 −1.45 −0.94 3.53 0.42 −3.33 1.62 1.75
SH t-stat 2.36 −1.10 −0.69 2.56 0.31 −2.44 1.40 1.56

where the β̂ terms stand for exposures to the corresponding factor, while the
γ terms stand for the reward for bearing the risk of that factor. The β̂ terms are
the independent variables in the regression, while the average excess returns
of the assets are the dependent variables. If loadings with respect to inno-
vations in a state variable are important determinants of average returns,
then there should be a significant price of risk associated with that state
variable.

Table II presents results for this cross-sectional regression. Loadings on
ûTERM represent an important cross-sectional determinant of average returns;
this result is robust to the errors-in-variables adjustment. Under the errors-
in-variables correction, the t-statistic for the hypothesis H0 : γûTERM = 0 is 2.56.
Loadings on ûRF are also significant. This result is robust to Shanken’s adjust-
ment as well, with a corresponding t-statistic of −2.44. The prices of risk related
to dividend yield and default spread surprises are not significant.

This table shows that the exposures of assets to innovations in RHML and
RSMB are not significant variables in the cross section in the presence of be-
tas with respect to surprises in the other state variables. The corresponding
t-statistics are 1.40 and 1.56, respectively, under the errors-in-variables correc-
tion. Therefore, based on the results presented in Table II, the hypothesis that
innovations in the dividend yield, term spread, default spread, and short-term
T-bill span the information contained in the FF factors cannot be rejected.

B. A Model Based on RM and Innovations in DIV, TERM, DEF, and RF

In this part of the paper I examine two separate groups from the set of
state variable innovations. The first group contains only the FF factors, while
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the second one contains only innovations in the variables associated with time-
series predictability, that is, the dividend yield, term spread, default spread,
and short-term T-bill. Therefore, I examine two different asset pricing specifi-
cations, each one involving the two-step Fama–MacBeth procedure,

Ri,t = αi + βi,M RM ,t + βi,HML RHML,t + βi,SMB RSMB,t + εi,t , ∀i, (9)

and

Ri,t = γ0 + γM β̂i,M + γHMLβ̂i,HML + γSMBβ̂i,SMB + ei,t , ∀t, (10)

which corresponds to the FF model,12 and

Ri,t = αi + βi,M RM ,t + (βi,ûDIV )ûDIV
t + (βi,ûTERM )ûTERM

t

+ (βi,ûDEF )ûDEF
t + (βi,ûRF )ûRF

t + εi,t , ∀i, (11)

and

Ri,t = γ0 + γM β̂i,M + (γûDIV )β̂i,ûDIV + (γûTERM )β̂i,ûTERM

+ (γûDEF )β̂i,ûDEF + (γûRF )β̂i,ûRF + e, ∀t, (12)

which corresponds to a model in which the relevant risk factors are innovations
to predictive variables.13 The objective is to compare the pricing performance
of these two models for the cross section of returns sorted by book-to-market
and size. The second specification is motivated by the previous observation
that HML and SMB do not add explanatory power to the set of state variables
that are associated with time-series predictability.

B.1. The Pattern of the Factor Loadings

Here I report the estimates of the factor loadings computed in the first-pass
time-series regressions (9) and (11). I also present joint tests of the significance
of the corresponding loadings, computed from a SUR system. I do this in order to
show that the innovations factors are relevant in the sense that the 25 portfolios
load significantly on them. Table III presents results for the FF three-factor
model for the period from July 1963 to December 2001. The factor loadings in
the table are consistent with those reported by FF (1993) for a shorter sample
period.

12 Note that the risk factors in this specification are the actual returns on the HML and SMB
portfolio. If these returns are substituted with the corresponding innovations to HML and SMB
derived from the VAR system, the results are qualitatively very similar. This indicates that the
FF factor returns and their VAR innovations are good proxies for each other. In addition, using
the actual returns on the HML and SMB portfolios makes for an easier comparison with previous
studies of the FF model that use these returns.

13 The innovations to the state variables used in this specification are still computed in a VAR
system that includes the FF factors.
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Table III
Loadings on the Fama–French Factors from

Time-Series Regressions
This table reports loadings on the excess market return, RM , and the Fama–French factors RHML
and RSMB computed in time-series regressions for 25 portfolios sorted by size and book-to-market.
The corresponding t-statistics are also reported and are corrected for autocorrelation and het-
eroskedasticity using the Newey–West estimator with five lags. The sample period is from July
1963 to December 2001. The intercepts are in percentage form. The last column reports F-statistics
and their corresponding p-values from an SUR system, testing the joint significance of the corre-
sponding loadings. The p-values are in percentage form. R2s from each time-series regression are
reported in percentage form.

Regression: Ri,t = αi + βi,MRM,t + βi,HMLRHML,t + βi,SMBRSMB,t + εi,t

Low 2 3 4 High Low 2 3 4 High

α tα F

Small −0.38 0.01 0.04 0.18 0.12 −3.40 0.18 0.56 2.84 1.91 2.96
2 −0.17 −0.10 0.08 0.08 −0.00 −2.25 −1.45 1.15 1.28 −0.01 0.01
3 −0.07 −0.00 −0.09 0.01 0.00 −1.03 −0.03 −1.26 0.17 0.06
4 0.16 0.21 −0.08 0.04 −0.05 1.67 −2.27 −0.99 0.61 −0.54
Large 0.21 −0.04 −0.02 −0.09 −0.21 3.25 −0.53 −0.27 −1.29 −2.36

βM tβM F

Small 1.04 0.96 0.93 0.92 0.98 44.38 39.40 50.88 46.60 43.39 >100
2 1.11 1.03 1.00 0.99 1.08 48.84 45.42 46.47 60.69 52.11 <0.01
3 1.09 1.07 1.03 1.01 1.10 52.59 38.53 32.93 52.70 38.97
4 1.05 1.11 1.08 1.03 1.17 46.03 36.33 36.86 41.15 36.74
Large 0.96 1.04 0.99 1.01 1.04 45.08 49.22 36.71 46.18 31.59

βHML tβHML F

Small −0.31 0.09 0.31 0.47 0.69 −5.86 1.79 9.62 14.97 17.10 >100
2 −0.38 0.18 0.43 0.59 0.76 −8.52 2.96 7.36 13.97 23.28 <0.01
3 −0.43 0.22 0.52 0.67 0.82 −14.90 3.10 7.39 10.58 15.94
4 −0.45 0.26 0.51 0.61 0.83 −10.55 3.42 7.43 11.92 16.07
Large −0.38 0.14 0.27 0.64 0.85 −10.47 2.58 5.65 11.82 20.56

βSMB tβSMB F

Small 1.41 1.33 1.12 1.04 1.09 36.39 24.68 36.50 24.34 25.40 >100
2 1.00 0.89 0.75 0.70 0.82 27.61 18.51 15.90 25.31 25.68 <0.01
3 0.72 0.51 0.44 0.38 0.53 24.97 7.68 6.81 8.28 8.87
4 0.37 0.20 0.16 0.20 0.26 9.26 3.42 2.64 6.70 4.22
Large −0.26 −0.24 −0.24 −0.22 −0.08 −9.25 −6.92 −6.12 −6.81 −2.11

R2

92.61 94.32 94.89 94.51 94.58
95.16 93.99 93.56 93.85 94.62
94.88 90.22 89.49 89.69 90.31
93.52 88.31 87.65 88.41 85.77
93.35 89.79 84.32 87.39 80.60
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Table IV presents results for the model with RM , ûDIV
t , ûTERM

t , ûDEF
t , and ûRF

t
over the same period. An F-test implies that the 25 loadings on innovations
to the term spread are jointly significant, with the corresponding p-value be-
ing 0.47%. Furthermore, portfolios’ loadings on ûTERM

t are related to book-to-
market: Within each size quintile, the loadings increase monotonically from
lower to higher book-to-market quintiles. In fact, the portfolios within the low-
est book-to-market quintile have negative sensitivities with respect to ûTERM

t ,
while the portfolios within the highest book-to-market quintile have positive
loadings on ûTERM

t . This pattern closely resembles the one observed in Table III
for the loadings on RHML.

Similarly, loadings on shocks to default spread are jointly significant in
Table IV, with the corresponding p-value being 0.24%. Moreover, the slopes
on ûDEF

t are systematically related to size. Within each book-to-market quin-
tile, the loadings increase almost monotonically from negative values for the
smaller size quintiles to positive values for the larger size quintiles. This pat-
tern closely resembles the mirror image of the one observed in Table III for
the loadings on RSMB. The slopes on dividend yield and T-bill innovations do
not exhibit any systematic patterns related to size or book-to-market. However,
both of these are jointly significant.

Note that the R2s in the time-series regressions with the innovations factors
are smaller than those in the regressions with the FF factors. This indicates
that potential errors-in-variables problems that arise in measuring the factor
loadings will be more serious in the case of the innovations terms. Therefore,
the results will be potentially biased against finding significant factor loadings
on the shocks to the predictive variables.14

B.2. The Prices of Risk

Panels A and B of Table V contain the results for equations (10) and (12)
that correspond to the second pass of the Fama–MacBeth method. Since the
dependent variables in the two regressions are excess returns, the intercept,
γ 0, of each cross-sectional regression should be zero. This hypothesis is strongly
rejected in the case of the FF model: The t-statistic reported in Panel A is 3.19
under the errors-in-variables adjustment. Panel B reveals that the intercept in
the model with the four innovations factors is not significant at any conven-
tional level under Shanken’s adjustment.

Loadings on ûTERM and ûRFcontinue to be important cross-sectional deter-
minants of average returns. Under the errors-in-variables correction, the t-
statistics for the hypotheses H0 : γûTERM = 0 and H0 : γûRF = 0 are 2.79 and
−2.40, respectively. The prices of risk related to dividend yield and default
spread surprises are not individually significant.

Panel A also reveals that loadings on HML represent a significant factor in
the cross section of the 25 portfolios, even after correcting for the sampling error

14 Kan and Zhang (1999) emphasize that checking the joint significance of the assets’ factor
loadings is an important step in detecting useless factors in the cross section.
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Table IV

Loadings on RM, ûDIV
t , ûTERM

t , ûDEF
t , and ûRF

t from Time-Series Regressions
This table reports loadings on the excess market return, RM , and innovations in the dividend yield (ûDIV

t ),
term spread (ûTERM

t ), default spread (ûDEF
t ), and short-term T-bill (ûRF

t ) computed in time-series regressions
for 25 portfolios sorted by size and book-to-market. The corresponding t-statistics are also reported and
are corrected for autocorrelation and heteroskedasticity using the Newey–West estimator with five lags.
The sample period is from July 1963 to December 2001. The last column reports F-statistics and their
corresponding p-values from an SUR system, testing the joint significance of the corresponding loadings.
The p-values are in percentage form. R2s from each time-series regression are reported in percentage form.

Regression: Ri,t = αi + βi,M RM ,t + βi,ûDIV ûDIV
t + βi,ûTERM ûTERM

t + βi,ûDEF ûDEF
t + βi,ûRF ûRF

t + εi,t

Low 2 3 4 High Low 2 3 4 High

βMKT tβMKT F

Small 1.44 1.23 1.09 1.01 1.02 24.20 22.74 20.76 19.57 18.87 >100
2 1.44 1.18 1.04 0.98 1.05 31.33 25.11 22.63 21.90 18.76 <0.01
3 1.38 1.12 0.98 0.90 0.98 39.96 32.34 22.52 21.58 17.66
4 1.27 1.08 0.97 0.90 0.99 45.46 29.07 24.02 23.95 19.60
Large 1.01 0.95 0.85 0.78 0.78 42.69 36.55 26.89 20.47 15.34

βûDIV tβûDIV F

Small 4.75 0.43 −5.02 −5.61 −7.88 0.76 0.08 −0.89 −1.10 −1.44 2.33
2 3.38 −4.01 −7.66 −6.76 −6.51 0.76 −0.79 −1.55 −1.35 −1.09 0.02
3 7.45 −1.30 −5.91 −8.27 −9.18 2.34 −0.35 −1.16 −1.53 −1.36
4 8.65 −5.83 −6.17 −8.18 −11.81 2.90 −1.29 −1.21 −1.72 −2.04
Large −0.78 −3.49 −1.73 −9.69 −9.50 −0.29 −1.18 −0.47 −1.83 −1.49

βûTERM tβûTERM F

Small 1.51 1.04 1.69 2.82 8.68 0.26 0.26 0.47 0.79 2.24 1.89
2 −8.21 −2.73 −0.19 1.36 5.16 −1.87 −0.75 0.06 0.46 1.44 0.47
3 −6.34 −3.52 −1.72 2.08 4.39 −1.77 −1.17 −0.55 0.55 1.18
4 −0.73 −1.51 0.21 0.02 2.13 −0.26 −0.59 0.06 0.01 0.54
Large −5.98 −3.26 0.78 −0.90 2.90 −2.22 −1.37 0.31 −0.26 0.74

βûDEF tβûDEF F

Small −15.45 −14.54 −6.86 −4.79 −8.58 −2.27 −2.17 −1.39 −1.09 −1.68 1.99
2 −10.03 −5.90 −4.78 0.82 −2.20 −2.04 −1.62 −1.37 0.22 −0.49 0.24
3 −11.17 0.22 1.73 4.03 0.81 −2.75 0.08 0.49 1.15 0.18
4 −5.80 4.81 4.80 8.03 1.08 −2.10 1.92 1.44 2.50 0.25
Large −2.45 3.99 9.12 7.25 2.56 −0.96 1.91 3.85 1.91 0.63

βûRF tβûRF F

Small 4.07 −2.58 0.07 1.03 2.77 0.77 −0.50 0.01 0.22 0.56 1.76
2 −4.37 −5.20 −6.25 −4.57 0.97 −1.00 −1.19 −1.60 −1.16 0.20 1.08
3 −7.63 −4.40 −6.53 −4.08 0.71 −2.29 −1.38 −2.07 −1.09 0.15
4 −3.43 0.47 −2.04 −5.74 −3.71 −1.12 0.16 −0.69 −1.61 −0.90
Large −3.55 −0.59 4.81 −0.89 0.30 −1.14 −0.22 1.41 −0.25 0.06

R2

61.51 60.92 63.41 62.41 59.93
73.93 73.95 74.47 71.88 67.96
79.81 81.80 77.54 73.58 68.96
84.99 86.05 80.32 77.51 69.42
87.65 86.11 77.89 67.67 55.88
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Table V
Cross-Sectional Regressions with the Fama–French Factor Loadings

and Loadings on Innovations to State Variables
This table presents Fama–MacBeth cross-sectional regressions using the excess returns on 25
portfolios sorted by book-to-market and size. The full-sample factor loadings, which are the in-
dependent variables in the regressions, are computed in one multiple time-series regression. The
coefficients are expressed as percentage per month. Panel A presents results for the Fama–French
three-factor model. Panel B presents results for the model including the excess market return, RM ,
and innovations in the dividend yield, term spread, default spread, and one-month T-bill yield.
The Adjusted R2 follows Jagannathan and Wang (1996) and is reported in percentage form. The
first set of t-statistics, indicated by FM t-stat, stands for the Fama–MacBeth estimate. The second
set, indicated by SH t-stat, adjusts for errors-in-variables and follows Shanken (1992). The last
column reports F-statistics and their corresponding p-values (in percentage form) for the test that
the pricing errors in the model are jointly zero. Each panel examines the sample period from July
1963 to December 2001.

Panel A: The Fama–French Three-Factor Model

γ 0 γ M γ HML γ SMB Adj. R2 F

Estimate 1.15 −0.65 0.44 0.16 71.00 2.48
FM t-stat 3.30 −1.60 3.09 1.04 0.03
SH t-stat 3.19 −1.55 3.07 1.00

Panel B: The Model with RM and Innovations in DIV, TERM, DEF, and RF

γ 0 γ M γûDIV γûTERM γûDEF γûRF Adj. R2 F

Estimate 0.64 −0.07 −1.39 4.89 −0.54 −3.22 77.00 1.41
FM t-stat 1.74 −0.16 −1.56 4.44 −0.58 −3.79 11.83
SH t-stat 1.08 −0.11 −0.99 2.79 −0.37 −2.40

in the loadings. Loadings on SMB do not appear to be significant in the cross
section of portfolio returns. None of the models in Table V shows that the market
beta, β̂M , is an important factor in the cross section of returns. Furthermore,
the estimate of the market risk premium tends to be negative. These results
are consistent with previous studies.15

Fama (1996) points out that the sign of the market risk premium in the
ICAPM is indeterminate due to the properties of the market portfolio as a
hedge against state variable risk. Fama argues that in a well-specified ICAPM,
the market portfolio orthogonalized to all state variable hedging demands must
have a positive premium. Therefore, one possible interpretation for the negative
estimates of the market risk premium in the model is that the market portfolio
acts as a hedge against uncertainty in the state variables under considera-
tion. Polk (2002) analyzes the characteristics of the market portfolio once that
portfolio has been orthogonalized to all state variables against which investors
want to hedge. It is beyond the scope of this paper to study the properties of

15 FF (1992), Jagannathan and Wang (1996), and Lettau and Ludvigson (2001) report negative
estimates for the market risk premium, using monthly or quarterly data.
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the orthogonal market portfolio. Even though the market beta is not priced in
the cross section of average returns, some preliminary results suggest that the
presence of this variable tends to increase the cross-sectional R2 of the model.16

Nevertheless, the fact that the market beta is not priced remains a puzzle and
warrants further investigation.

In summary, the model that includes both the excess return of the market
portfolio and innovations to the dividend yield, term spread, default spread,
and short-term T-bill cannot be rejected using Shanken’s t-statistics, while the
FF model is rejected over the 1963 to 2001 period. The results further reveal
that assets’ covariances with a term spread and a T-bill surprise factor are
important in the cross section of average portfolio returns.

B.3. Fitted Versus Realized Returns

To judge the goodness of fit of the two models, I use the cross-sectional R2

measure employed by Jagannathan and Wang (1996) and Lettau and Ludvigson
(2001). This measure is calculated as

R2 = σ 2
C(R) − σ 2

C(e)
σ 2

C(R)
, (13)

where σ 2
C represents the in-sample cross-sectional variance, R is a vector of

average excess returns, and e stands for the vector of average residuals. This
R2 shows the fraction of cross-sectional variation in average returns that is
explained by the model. It is a measure of unconditional deviations from the
model considered.

The adjusted R2 measure is a summary statistic for the overall fit of each
cross-sectional model. Based on the measure of 77%, the specification in Panel B
of Table V performs better than the FF model. The FF model explains 71% of
the cross-sectional variation in average returns. The 6% gain in explanatory
power relative to the FF model seems impressive given the nature of the factors
considered. HML and SMB are sorted on the same basis as the 25 portfolios
and they represent portfolio returns, while the innovations terms stand for
realizations of factors that capture time-varying investment opportunities.

It is also helpful to provide a visual comparison of the performance of the
two models. To do so, I plot the fitted expected return of each portfolio against
its realized average return in Figure 1. The fitted expected return is computed
using the estimated parameter values from a given model specification. The
realized average return is the time-series average of the portfolio return. If
the fitted expected return and the realized average return for each portfolio
are the same, then they should lie on a 45-degree line through the origin.

Figure 1 shows the fitted versus realized returns for the 25 portfolios in two
different models for the period from July 1963 to December 2001. Each two-digit
number represents a separate portfolio. The first digit refers to the size quintile

16 These results are available upon request from the author.
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Figure 1. Fitted expected returns vs. average realized returns for 1963:07–2001:12. This
figure shows realized average returns (%) on the horizontal axis and fitted expected returns (%) on
the vertical axis for 25 size and book-to-market sorted portfolios. Each two-digit number represents
a separate portfolio. The first digit refers to the size quintile (1 being the smallest and 5 the largest),
while the second digit refers to the book-to-market quintile (1 being the lowest and 5 the highest).
For each portfolio, the realized average return is the time-series average of the portfolio return and
the fitted expected return is the fitted value for the expected return from the corresponding model.
The straight line is the 45-degree line from the origin. Panel A: The Fama–French three-factor
model. Panel B: The model with the excess market return and innovations in the dividend yield,
term spread, default spread, and short-term T-bill.

of the portfolio (1 being the smallest and 5 the largest), while the second digit
refers to the book-to-market quintile (1 being the lowest and 5 the highest). For
example, portfolio 15 has the highest book-to-market value among the portfolios
in the smallest size quintile. In other words, it is the smallest value portfolio.

Panel A of Figure 1 shows the performance of the FF three-factor model. It can
be seen from the graph that the model goes a long way toward explaining the
value effect: In general, the fitted expected returns on value portfolios (larger
second digit) are higher than the fitted expected returns on growth portfolios
(smaller second digit). This is consistent with the data on realized average
returns for these portfolios. Similarly, Panel B indicates that the model with
the market portfolio and four innovations terms is also successful at explaining
the value effect.

By inspection of Panel A, a few portfolios stand out as problematic for the
FF model in terms of distance from the 45-degree line, namely, the growth
portfolios within the smallest and largest size quintiles (11, 41, and 51) and
the value portfolios within the largest size quintiles (45, 54, and 55). In con-
trast, Panel B shows that the model with RM , ûDIV , ûTERM, ûDEF, and ûRF

is more successful at pricing the portfolios that are challenging for the FF
model. The realized returns on growth portfolios within the smallest and
largest size groups and the value portfolios within the largest size groups are
brought closer to the 45-degree line under the model with the four innovations
factors.
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An interesting observation that emerges from Figure 1 is that the model with
the innovations terms is very successful at pricing the smallest value portfolio
(15), which appears to be problematic for the FF model.

In summary, the superior performance of the model with the four innovations
terms relative to the FF three-factor model seems to derive mainly from value
and growth portfolios within the largest size quintile. In addition, there is some
performance gain from pricing the smallest growth portfolio, portfolio 11. How-
ever, this portfolio remains problematic even for the model with the predictive
variable surprises.17

Although the regression R2 is an intuitive measure, some authors argue that
it might be somewhat problematic since it gives equal weights to each asset
included in the set of test assets even though some assets may be much more
highly correlated than others. To address this concern, I also report a compos-
ite pricing error and its corresponding p-value for a 5% significance test. The
composite pricing error is computed as

Q = Te
′
�̂−1e, (14)

where T is the number of time-series observations, e stands for the average
residual vector in the cross section, and �̂ is the estimated covariance matrix
of the time-series residuals. The Q-statistic shown above has an asymptotic
chi-squared distribution. Following Shanken (1985), I compute a transforma-
tion of the Q-statistic that has an approximate F-distribution in small sam-
ples.18 In addition, the composite pricing error is adjusted for the errors-in-
variables problem that arises from using estimated factor loadings in the cross
section.

The last column of Table V reports the F-tests and the corresponding
p-values for the null hypothesis that the pricing errors in each model are
jointly equal to zero. The table shows that the pricing errors of the FF model
are not equal to zero: The corresponding F-statistic is 2.48, associated with a
p-value of 0.03%. In contrast, the null of zero pricing errors cannot be rejected for
the model based on the four innovations factors: The corresponding p-value is
11.83%.

17 If the levels of the predictive variables, rather than their innovations, are used as factors as
in Hodrick and Zhang (2001), the resulting model does not perform better than the FF three-factor
specification. When the model includes loadings on MKT, DIV, TERM, DEF, and RF, the cross-
sectional adjusted R2 is 65.25% for the period from July 1963 to December 2001. The reason behind
the poor performance of this specification could be that it is necessary to filter out the unexpected
components of these variables to diminish the errors-in-variables problem. This becomes even more
important given the high autocorrelations of these series (the first-order autocorrelations of the
predictive variables are higher than 0.95 for the sample period from July 1963 to December 2001).
Furthermore, asset pricing theory predicts that the shocks to the state variables should be priced
in the cross section of average returns.

18 The transformation accounts for the problem that reliance on the asymptotic χ2 distribution
in this cross-sectional context leads to overrejection of the null hypothesis (i.e., zero pricing errors)
when it is true.
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B.4. The Role of Conditioning Information

In this section, I examine whether the model that includes innovations in the
dividend yield, term spread, default spread, and short-term T-bill is able to cap-
ture common time-varying patterns in portfolio returns. The discussion follows
Ferson and Harvey (1999), who show that portfolio-specific loadings on lagged
predictive variables have significant explanatory power for the cross section of
25 portfolios sorted by size and book-to-market in the FF model. Similarly, I
check whether sensitivities with respect to predictive variables have explana-
tory power in the model with the innovations risk factors. This test serves two
goals. The first goal is to show that the model based on innovations in DIV,
TERM, DEF, and RF is a good candidate for a conditional model. The second
one is to provide a specification test of the model by including an additional
explanatory variable in the cross section of average returns.

I use four instruments to proxy for time-varying patterns in returns: DIV,
TERM, DEF, and RF. First, for each portfolio, I estimate the univariate regres-
sion coefficient, δ, on a single lagged instrument, using time-series regressions.
Then I study the significance of the loadings with respect to a given instrument
in the presence of loadings with respect to a set of risk factors. If the model based
on the innovations terms is able to explain the cross section of conditional ex-
pected returns, then the δ variable should not have explanatory power over and
above the factors in the model. The following specification forms the basis of
the test:

Ri,t = γ0 + γM β̂i,M + (γûDIV )β̂i,ûDIV + (γûTERM )β̂i,ûTERM + (γûDEF )β̂i,ûDEF

+ (γûRF )β̂i,ûRF + (γδ̂)δ̂i + ei,t . (15)

The null hypothesis that I test is that γδ̂ = 0.
Ferson and Harvey (1999) report that the FF model leaves out important

time-varying patterns in expected returns that are related to cross-sectional
differences in sensitivities to lagged interest rates. I uncover a similar result
based on a different sample period. Specifically, portfolios’ loadings on lagged
values of the T-bill rate and the term spread are significant determinants of
the cross section of returns over and above betas with respect to the FF fac-
tors. However, I show that the model based on the innovations terms is able to
capture cross-sectional differences in sensitivities to lagged interest rates.

Table VI contains the results for the case of RF and TERM. Panel A shows that
δ̂RF has significant explanatory power for the cross section of returns in the FF
model. For the sample period from July 1963 to December 2001, the t-statistic
for the hypothesis γδ̂RF = 0 is 2.35 under the errors-in-variables adjustment.
Panel B shows that the null hypothesis is not rejected in the case of the model
with RM , ûDIV , ûTERM, ûDEF, and ûRF. Loadings on lagged values of the T-bill
rate do not have marginal explanatory power in the model with the innovations
terms. Therefore, the ICAPM model is able to capture common time-varying
patterns related to cross-sectional differences in sensitivities to lagged short-
term rates.
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Table VI
Cross-Sectional Regressions Showing the Incremental Explanatory

Power of Portfolio-Specific Loadings on Lagged Values of RF
and TERM

This table presents Fama–MacBeth cross-sectional regressions using the excess returns on 25 port-
folios sorted by book-to-market and size. The full-sample factor loadings, which are the independent
variables in the regressions, are computed in one multiple time-series regression. The coefficients
are expressed as percentage per month. The variables δ̂RF and δ̂TERM represent the loadings of each
portfolio return on lagged values of RF and TERM, respectively, computed in separate time-series
regressions. Panel A examines whether loadings on δ̂RF have incremental explanatory power in
the Fama–French model. Panel B examines whether loadings on δ̂RF have incremental explana-
tory power in the model with the excess market return, RM , and innovations in the dividend yield,
term spread, default spread, and T-bill yield. Panel C examines whether loadings on δ̂TERM have
incremental explanatory power in the Fama–French model. Panel D examines whether loadings
on δ̂TERM have incremental explanatory power in the model with RM and innovations in the div-
idend yield, term spread, default spread, and T-bill yield. The Adjusted R2 follows Jagannathan
and Wang (1996) and is reported in percentage form. The first set of t-statistics, indicated by FM
t-Stat, stands for the Fama–MacBeth estimate. The second set, indicated by SH t-stat, adjusts for
errors-in-variables and follows Shanken (1992). Each panel examines the sample period from July
1963 to December 2001.

Panel A: Loadings on Lagged Values of RF in the Fama–French Model

γ 0 γ M γ HML γ SMB γδ̂RF Adj. R2

Estimate 1.67 −0.98 0.33 0.26 0.17 74.14
FM t-stat 4.95 −2.52 2.19 1.63 2.49
SH t-stat 4.77 −2.45 2.18 1.62 2.35

Panel B: Loadings on Lagged Values of RF in the Model with RM
and Innovations in DIV, TERM, DEF, and RF

γ 0 γ M γûDIV γûTERM γûDEF γûRF γδ̂RF Adj. R2

Estimate 0.68 −0.07 −1.34 4.88 −0.69 −3.05 0.03 76.50
FM t-stat 1.71 −0.15 −1.47 4.41 −0.83 −3.58 0.51
SH t-stat 1.06 −0.11 −0.93 2.76 −0.53 −2.28 0.31

Panel C: Loadings on Lagged Values of TERM in the Fama–French Model

γ 0 γ MKT γ HML γ SMB γδ̂TERM Adj. R2

Estimate 0.76 −0.58 0.45 0.08 0.68 74.46
FM t-stat 1.83 −1.38 3.16 0.46 2.39
SH t-stat 1.77 −1.35 3.14 0.45 2.27

Panel D: Loadings on Lagged Values of TERM in the Model with RM and
Innovations in DIV, TERM, DEF, and RF

γ 0 γ M γûDIV γûTERM γûDEF γûRF γδ̂TERM Adj. R2

Estimate 0.31 0.09 −1.44 4.81 −0.19 −2.88 0.53 77.69
FM t-stat 0.71 0.19 −1.60 4.39 −0.20 −3.45 1.81
SH t-stat 0.46 0.13 −1.04 2.85 −0.13 −2.27 1.18
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Panels C and D of Table VI contain the results for the case of TERM. Panel
C shows that δ̂TERM is a significant factor in the cross section of returns even
after accounting for the FF factor loadings. However, as shown in Panel D,
loadings on lagged values of the term spread are not significant cross-sectional
predictors in the model in which the risk factors are RM , ûDIV , ûTERM, ûDEF, and
ûRF. The model based on the innovations factors explains away cross-sectional
differences in sensitivities to the slope of the term structure.

In summary, the ICAPM model in which the relevant risk factors are both the
market return and shocks to the dividend yield, term spread, default spread,
and short-term rate captures time-varying patterns in returns related to move-
ments in the level and slope of the yield curve. In addition, the model passes this
specification test since loadings with respect to term spread and T-bill innova-
tions remain significant in the presence of the new portfolio-specific variables.

C. Robustness Results

The results so far suggest that innovations in the FF factors do not add ex-
planatory power to the model that contains innovations in variables that are as-
sociated with time-series return predictability. Furthermore, an ICAPM model
in which the risk factors are the excess market return and innovations in DIV,
TERM, DEF, and RF performs better than the FF three-factor model for the
cross section of average returns. This section provides a variety of robustness
checks that are designed to test whether these results reflect economic content
or random chance.

C.1. Monte Carlo Analysis

As shown in Panel B of Table V, the betas with respect to innovations in four
state variables explain 77% of the cross-sectional differences in average returns.
However, the time-series regressions in Table IV used to compute these betas
indicate that the factor loadings are imprecisely estimated. Therefore, to eval-
uate the empirical evidence on the ICAPM model in light of the beta estimates,
I present a Monte Carlo experiment. This experiment describes the small sam-
ple empirical distributions of different parameters of interest.19 Furthermore,
the experiment confirms that the empirical results reported in Table V reflect
the presence of significant state variable risk premia rather than random
factors.

The Monte Carlo exercise is designed as follows. First, I estimate factor load-
ings for 25 size and book-to-market portfolios from time-series regressions,

Ri,t = αi + βi,M RM ,t + (βi,ûDIV )ûDIV
t + (βi,ûTERM )ûTERM

t

+ (βi,ûDEF )ûDEF
t + (βi,ûRF )ûRF

t + εi,t . (16)

19 I thank an anonymous referee for suggesting this Monte Carlo experiment.



Do the Fama–French Factors Proxy for Innovations? 605

Then I run cross-sectional regressions to determine the risk premia associ-
ated with the loadings on the innovations,

Ri,t = γ0 + γM β̂i,M + (γûDIV )β̂i,ûDIV + (γûTERM )β̂i,ûTERM

+ (γûDEF )β̂i,ûDEF + (γûRF )β̂i,ûRF + ei,t . (17)

I take the OLS estimates of the betas in (16) and the risk premia in (17) as
given, that is, the null hypothesis is that the model in (16) and (17) is correct.
Then, I simulate 10,000 time series of returns under the estimated model as
follows:

R∗
i,t = α̂i + β̂i,M RM ,t + (β̂i,ûDIV )ûDIV

t + (β̂i,ûTERM )ûTERM
t

+ (β̂i,ûDEF )ûDEF
t + (β̂i,ûRF )ûRF

t + ε∗
i,t , (18)

where ε∗
t stands for the bootstrap OLS residual. The simulated returns are

then used to estimate a new set of factor loadings for each asset, as well as
factor risk premia and cross-sectional adjusted R2s. In this way, the small-
sample distributions of the betas, the cross-sectional risk premia, and the R2s
are generated.

In Table VII, I present the finite distribution of betas, risk premia, and ad-
justed cross-sectional R2s. Panel A of Table VII reports the distribution of the
betas with respect to term spread and T-bill innovations, along with the betas
estimated under the null model. I focus on the term spread and T-bill surprises
since they represent the two significant variables in the cross section. For all 25
portfolios, the loadings with respect to ûTERM

t and ûRF
t are unbiased: The 50%

critical value of each distribution is very close to the value under the null hy-
pothesis. The betas with respect to innovations in the term spread and T-bill are
very dispersed. For example, the smallest value portfolio (15) has a ûTERM

t beta
with a 2.5% critical value of −0.0103 and a 97.5% critical value of 0.1848. In
summary, the estimates of the factor loadings are unbiased and their standard
errors are large.

Panel B of Table VII presents the finite distribution of the risk premia pa-
rameters and the adjusted R2. Note that the distributions of the risk premia
on ûTERM

t and ûRF
t exhibit a downward bias. This is to be expected due to the

sampling error in the estimated betas. The mean value for the risk premium
on term spread innovations is 3.24, which is below the population value of
4.89. Similarly, the mean value for the risk premium on T-bill innovations is
−2.09, which is lower in magnitude than the population value of −3.22. The
null hypothesis that the ûTERM

t and the ûRF
t risk premia are equal to zero is

strongly rejected, given the 95% range of their finite sample distributions. The
cross-sectional R2 is also far away from zero; its finite distribution captures a
downward bias as well.

Therefore, despite the fact that the betas have large standard errors, the
cross-sectional dimension of the model captures the fact that there are sig-
nificant risk premia associated with term spread and T-bill innovations. The
Monte Carlo experiment indicates that the innovations with respect to the state
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Table VII
Monte Carlo Experiment

This table presents a Monte Carlo experiment, designed as follows. First, factor loadings for 25 size
and book-to-market portfolios are estimated from time-series regressions. Then the risk premia
associated with the loadings are determined in cross-sectional regressions. The OLS estimates
from this two-step procedure are taken as given, that is, the null hypothesis is that the estimated
model is correct. Then, 10,000 time series of returns are generated under the estimated model. The
simulated returns are used to estimate a new set of factor loadings for each asset, as well as factor
risk premia and cross-sectional adjusted R2s. In this way, the small-sample distributions of the
betas, the cross-sectional risk premia, and the R2s are generated. Panel A reports the distribution
of the betas with respect to term spread and T-bill innovations, along with the betas estimated
under the null model. Panel B presents the finite distribution of the risk premia parameters and
the adjusted R2.

Panel A: Time Series

βûTERM βûRF

Null 2.5 10 50 90 97.5 Null 2.5 10 50 90 97.5

11 1.51 −11.73 −7.17 1.42 9.97 14.67 4.07 −10.29 −5.13 4.11 13.61 18.21
12 1.04 −10.38 −6.31 1.03 8.35 12.41 −2.58 −14.79 −10.44 −2.64 5.64 9.85
13 1.69 −7.86 −4.62 1.69 7.91 11.24 0.07 −10.27 −6.55 0.11 6.94 10.44
14 2.82 −6.34 −3.12 2.86 8.65 11.85 1.03 −8.57 −5.18 1.02 7.47 10.77
15 8.68 −1.03 2.36 8.66 15.02 18.48 2.77 −7.60 −3.94 2.76 9.63 13.22
21 −8.21 −18.20 −14.60 −8.20 −1.83 1.50 −4.37 −15.02 −11.35 −4.32 2.74 6.23
22 −2.73 −10.84 −7.95 −2.72 2.53 5.50 −5.20 −13.72 −10.70 −5.21 0.50 3.35
23 −0.19 −7.46 −4.90 −0.16 4.46 6.87 −6.25 −13.66 −11.09 −6.20 −1.28 1.16
24 1.36 −5.70 −3.24 1.43 6.00 8.63 −4.57 −12.00 −9.48 −4.55 0.26 2.78
25 5.16 −3.22 −0.32 5.17 10.66 13.72 0.97 −7.87 −4.88 0.91 6.75 9.67
31 −6.34 −14.39 −11.53 −6.38 −1.14 1.67 −7.63 −16.34 −13.17 −7.59 −1.96 0.99
32 −3.52 −9.64 −7.48 −3.54 0.54 2.57 −4.40 −10.95 −8.56 −4.39 −0.16 2.09
33 −1.72 −7.95 −5.76 −1.71 2.37 4.51 −6.53 −12.95 −10.62 −6.48 −2.38 −0.04
34 2.08 −4.18 −1.97 2.11 6.22 8.50 −4.08 −10.63 −8.40 −4.07 0.20 2.43
35 4.39 −3.27 −0.60 4.42 9.47 12.24 0.71 −7.32 −4.54 0.71 6.08 8.71
41 −0.73 −6.97 −4.75 −0.77 3.15 5.45 −3.43 −10.10 −7.72 −3.36 0.89 3.28
42 −1.51 −6.57 −4.83 −0.47 1.79 3.51 0.47 −4.81 −2.99 0.50 4.01 5.88
43 0.21 −5.29 −3.43 0.25 3.93 5.96 −2.04 −7.93 −5.84 −2.00 1.80 3.94
44 0.02 −5.71 −3.72 0.04 3.79 5.69 −5.74 −11.85 −9.66 −5.78 −1.85 0.23
45 2.13 −5.67 −2.89 2.21 7.16 9.76 −3.71 −11.81 −9.08 −3.70 1.51 4.27
51 −5.98 −10.35 −8.87 −5.98 −3.08 −1.48 −3.55 −8.24 −6.59 −3.54 −0.39 1.27
52 −3.26 −7.77 −6.11 −3.26 −0.40 1.23 −0.59 −5.42 −3.70 −0.59 2.43 4.14
53 0.78 −4.65 −2.60 0.75 4.17 6.00 4.81 −0.79 1.16 4.79 8.46 10.39
54 −0.90 −7.11 −4.96 −0.84 3.21 5.55 −0.89 −7.57 −5.24 −0.97 3.41 5.74
55 2.90 −5.20 −2.37 2.89 8.26 10.95 0.30 −8.50 −5.38 0.30 5.89 8.88

Panel B: Cross Section

Null 2.5 10 50 90 97.5

γ 0 0.64 −0.33 0.08 0.81 1.45 1.81
γ M −0.07 −1.23 −0.87 −0.24 0.50 0.93
γûDIV −1.39 −4.21 −3.13 −1.42 0.10 0.98
γûTERM 4.89 0.37 1.51 3.24 5.04 6.06
γûDEF −0.54 −3.01 −2.05 −0.44 1.03 1.87
γûRF −3.22 −4.48 −3.60 −2.09 −0.55 −0.01
Adj. R2 77.00 23.18 39.63 70.14 79.27 84.68
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variables considered here are not useless factors, but rather important sources
of risk for portfolio returns.

C.2. The Role of Portfolio Characteristics

The previous sections of the paper show that a multifactor model that includes
the market return and innovations in predictive variables performs very well
in explaining the cross section of unconditional average returns. Jagannathan
and Wang (1998) argue that a valid test for the correct specification of a given
cross-sectional regression model is the inclusion of additional cross-sectional
predictors of returns. Therefore, in this section I examine the robustness of the
model with the innovations terms to the presence of portfolio characteristics.
The two characteristics that I focus on are book-to-market and size of the 25
portfolios. The corresponding specification is

Ri,t = γ0 + γM β̂i,M + (γûDIV )β̂i,ûDIV + > (γûTERM )β̂i,ûTERM + (γûDEF )β̂i,ûDEF

+ (γûRF )β̂i,ûRF + (γZ )Zi,t−1 + ei,t , (19)

where Zi stands for the natural log of book-to-market or size. The null hypoth-
esis tested is that γZ = 0. In Table VIII, returns from July of year t to June of
year t + 1 are matched with the log of the book-to-market ratio for December of
year t − 1 and the log of size for June of year t, as in FF (1992). Panels A and B
show that there are no residual book-to-market or size effects when the charac-
teristics are included separately in the model with RM , ûDIV , ûTERM, ûDEF, and
ûRF.

Note that the magnitude and significance of γûTERM and γûRF decrease in
the presence of book-to-market or size. Even so, loadings on these innova-
tions remain strongly significant, even under Shanken’s adjustment. The cross-
sectional adjusted R2s indicate that the two characteristics do not add much to
the explanatory power of the model.

In Panel C of Table VIII, both characteristics are included as a specification
test of the model. As before, the two characteristics do not add cross-sectional
explanatory power. They are not significant determinants of the cross section
of returns in the presence of loadings on RM , ûDIV , ûTERM, ûDEF, and ûRF. Over-
all, these results provide further support for the earlier finding that the model
based on surprises in predictive variables provides an explanation for the em-
pirical success of the FF factors.20

20 I also use portfolios sorted on risk loadings to test the performance of the ICAPM model. Risk-
sorted portfolios are constructed in the following way. Each month, each stock’s risk loadings are
computed from a multiple regression of returns over the previous 60 months on the factors in the
ICAPM model over the same 60 months. The factors are the excess market return and innovations
to the dividend yield, the term spread, the default spread, and the T-bill rate. Each month I perform
a sort on every risk loading in the model, that is, I form five value-weighted portfolios sorted on
the market beta, five value-weighted portfolios sorted on beta with innovations to the dividend
yield, etc. This procedure leads to the formation of 25 portfolios whose returns are recorded every
month beginning with July 1963. I add the set of 25 portfolios sorted by risk loadings to the set of
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Table VIII
Cross-Sectional Regressions Showing the Incremental Explanatory

Power of Portfolio Characteristics
This table presents Fama–MacBeth cross-sectional regressions using the excess returns on 25 port-
folios sorted by book-to-market and size. The full-sample factor loadings, which are the independent
variables in the regressions, are computed in one multiple time-series regression. The coefficients
are expressed as percentage per month. Panel A examines whether book-to-market (BM) has incre-
mental explanatory power in the model including the excess market return, RM , and innovations in
the dividend yield, term spread, default spread, and 1-month T-bill yield. Returns from July of year
t to June of year t + 1 are matched with BM measured in December of year t − 1. Panel B examines
whether size has incremental explanatory power in the model including RM and innovations in the
dividend yield, term spread, default spread, and 1-month T-bill yield. Returns from July of year t
to June of year t + 1 are matched with size measured in June of year t. Panel C examines whether
BM and size have incremental explanatory power in the model including RM and innovations in
the dividend yield, term spread, default spread, and 1-month T-bill yield. The Adjusted R2 follows
Jagannathan and Wang (1996) and is reported in percentage form. The first set of t-statistics, indi-
cated by FM t-stat, stands for the Fama–MacBeth estimate. The second set, indicated by SH t-stat,
adjusts for errors-in-variables and follows Shanken (1992). Each panel examines the sample period
from July 1963 to December 2001.

Panel A: BM in the Model with RM and Innovations in DIV, TERM, DEF, and RF

γ 0 γ M γûDIV γûTERM γûDEF γûRF γ BM Adj. R2

Estimate 0.79 −0.18 −0.73 4.68 −0.78 −3.04 0.07 76.45
FM t-stat 2.01 −0.40 −0.80 4.31 −0.85 −3.68 1.49
SH t-stat 1.30 −0.28 −0.52 2.75 −0.56 −2.38 0.89

Panel B: Size in the Model with RM and Innovations in DIV, TERM, DEF, and RF

γ 0 γ M γûDIV γûTERM γûDEF γûRF γ Size Adj. R2

Estimate 1.48 −0.49 −0.42 3.32 0.21 −2.66 −0.07 77.18
FM t-stat 3.26 −1.30 −0.50 3.16 0.24 −3.02 −1.70
SH t-stat 2.51 −1.09 −0.39 2.44 0.19 −2.33 −1.34

Panel C: BM and Size in the Model with RM and Innovations in DIV, TERM, DEF, and RF

γ 0 γ M γûDIV γûTERM γûDEF γûRF γ BM γ Size Adj. R2

Estimate 1.69 −0.64 0.39 2.95 −0.04 −2.41 0.08 −0.07 77.69
FM t-stat 3.62 −1.71 0.47 2.92 −0.05 −2.81 1.76 −1.79
SH t-stat 2.82 −1.45 0.38 2.30 −0.04 −2.21 1.25 −1.37

C.3. Relation between the Innovations and GDP Growth

The previous sections of the paper show the relation between the FF fac-
tors and innovations in state variables that describe financial investment

the 25 Fama–French portfolios. If the success of the ICAPM model with the characteristic-sorted
portfolios is spurious, then the additional risk-sorted portfolios should expose the weakness of the
model. The results from cross-sectional regressions reveal that the model is robust to the inclusion
of the 25 risk portfolios. These results are available upon request.
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opportunities. Other authors study the relation between the FF factors and
important macroeconomic variables. For example, Vassalou (2003) shows that
news related to future GDP growth is an important factor, in addition to the
market portfolio, for the cross section of returns. She shows further that the
FF factors HML and SMB may be proxies for news about future GDP growth.
The time-series literature shows that some of the state variables considered in
this paper, for example, the term spread and the short-term interest rate, are
good predictors of future GDP growth. Therefore, a natural question arises as
to whether the innovations in the state variables simply capture news about
future GDP growth.21 Next, I briefly examine this possibility. I show that the
innovations terms are related to GDP news, but this is not why they are suc-
cessful in the cross section of returns. Rather, they contain information that is
important for asset pricing and independent of the information they contain
about GDP news. The conclusion is that the innovations in the state variables
that I choose contain information about the time variation in the financial in-
vestment opportunity set. This information is not necessarily related to news
about future GDP growth.

Following Vassalou (2003), I construct two portfolios that track news about
future GDP growth. One of the portfolios contains eight base assets, namely, six
equity portfolios and two fixed income portfolios, and is denoted as TPGDP. The
other tracking portfolio contains only two fixed income assets and is denoted
as TPGDPFX .22 To examine whether GDP news adds explanatory power to the
model based on the innovations factors, I include the tracking portfolio for GDP
news as an additional risk factor in the ICAPM specification.

The results are presented in Table IX. Panel A refers to the case in which
the tracking portfolio for GDP news contains both equity and fixed income
base assets. Panel B refers to the case in which only fixed income assets are
used to track news about future GDP growth. Both panels tell the same story:
The information in the innovations terms is still a significant determinant of
average returns. Therefore, even if we account for the possibility that the state
variables contain information about changes in GDP growth, this is not the
driving force behind their significant risk premia in the cross section. Rather,
they contain information about time variation in the investment opportunity
set, which is independent of GDP-related news. The state variables are related
to variation in the financial investment opportunity set, and this variation is
not necessarily related to changes in future GDP growth.

21 I thank an anonymous referee for suggesting that there might exist a relation between news
about future GDP growth and innovations in state variables.

22 The equity portfolios are constructed by Fama and French from the intersection of two size
and three book-to-market portfolios. The fixed income portfolios are the returns on both a portfolio
that represents a spread between long-term corporate and government bonds, and a portfolio that
represents the difference between a long-term and a short-term government bond. In both cases,
lagged control variables are used in addition to the returns on the base assets. The control variables
are the same as the ones used in Vassalou (2003).
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Table IX
Relation between GDP Growth and the Innovations in State Variables
This table presents Fama–MacBeth cross-sectional regressions using the excess returns on 25 port-
folios sorted by book-to-market and size. The full-sample factor loadings, which are the independent
variables in the regressions, are computed in one multiple time-series regression. The coefficients
are expressed as percentage per month. The variables TPGDP and TPGDPFX represent two portfo-
lios that track news about future GDP growth. The former contains eight base assets, six equity
portfolios and two fixed income portfolios. The latter contains only two fixed income assets. Panel
A examines whether loadings on TPGDP have incremental explanatory power in the model with
the excess market return, RM , and innovations in the dividend yield, term spread, default spread,
and 1-month T-bill. Panel B examines whether loadings on TPGDPFX have incremental explanatory
power in the model with RM and innovations in the dividend yield, term spread, default spread,
and 1-month T-bill. The Adjusted R2 follows Jagannathan and Wang (1996) and is reported in
percentage form. The first set of t-statistics, indicated by FM t-stat, stands for the Fama–MacBeth
estimate. The second set, indicated by SH t-stat, adjusts for errors-in-variables and follows Shanken
(1992). Each panel examines the sample period from July 1963 to December 1998.

Panel A: Loadings on TPGDP in the Model with RM and Innovations in DIV,
TERM, DEF, and RF

γ 0 γ M γûDIV O γûT E RM O γûDE F O γûRF O γTPGDP Adj. R2

Estimate 0.87 −0.30 −0.61 2.44 −1.00 −1.95 0.02 77.82
FM t-stat 2.37 −0.70 −0.75 2.67 −1.24 −2.62 0.65
SH t-stat 1.85 −0.58 −0.60 2.14 −0.98 −2.12 0.53

Panel B: Loadings on TPGDPFX in the Model with RM and Innovations in DIV,
TERM, DEF, and RF

γ 0 γ M γûDIV O γûT E RM O γûDE F O γûRF O γTPGDPFX Adj. R2

Estimate 0.90 −0.30 −1.34 3.30 −1.21 −1.70 0.05 76.58
FM t-stat 2.53 −0.70 −1.46 3.26 −1.43 −2.04 1.34
SH t-stat 1.80 −0.55 −1.06 2.36 −1.03 −1.76 0.89

IV. Conclusion

This paper contributes to the ongoing debate about the economic nature
of the Fama–French (1993) size and book-to-market factors. I investigate
whether the FF factors HML and SMB are related to shocks in state variables
that describe time variation in investment opportunities. The results show that
HML and SMB are significantly correlated with innovations in state variables
that predict the excess market return and its variance. Specifically, I find that
HML proxies for a term spread surprise factor in returns, while SMB proxies for
a default spread surprise factor. Therefore, this paper establishes a significant
link between a set of variables associated with time-series return predictability
and a set of variables associated with cross-sectional return predictability.

In addition, I examine an ICAPM model that contains as factors the mar-
ket return and shocks to the dividend yield, term spread, default spread, and
1-month T-bill yield. This model explains the cross section of average returns on
25 portfolios sorted by size and book-to-market better than the FF three-factor



Do the Fama–French Factors Proxy for Innovations? 611

model. The parts of HML and SMB that are important for pricing risky assets
are those explained by surprises in state variables. Thus, this paper provides
evidence for an ICAPM explanation of the empirical success of the FF model.
The ICAPM model based on innovations in variables that predict the market
return and the yield curve is robust to different specification tests.

Despite the ICAPM interpretation of the FF model, the results in this paper
indicate that it is not the best model to capture assets’ covariances with time-
varying investment opportunities. I propose the model based on innovations in
the dividend yield, term spread, default spread, and short-term T-bill rate as
a better ICAPM model for the cross section of average return. The superiority
of the model comes from its ability to explain common time-varying patterns
in returns. Namely, it captures cross-sectional differences in sensitivities with
respect to conditioning information, represented by loadings on lagged values
of predictive variables. The FF model, however, is not successful at capturing
the effect of conditioning information, as shown in Ferson and Harvey (1999).
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